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Abstract. The checkerboard update Glauber model for the one-dimensional k ing  model 
is mapped onto a cellular automata model. This cellular automata model is found to be a 
special case of the well known (two-state) triangular cellular automata model. We show, 
therefore, that there exists a subspace of the full parameter space of the triangular cellular 
automata that obeys detailed balance. Using this result we show that there are no phase 
transitions within the interior of the cubical parameter space of the triangular cellular 
automata model. We identify a new line of critical points for the triangular cellular automata. 
This critical line is associated with the zero-temperature critical line of the one-dimensional 
king antiferromagnetic in an external field. The critical properties of the checkerboard 
Glauber model are studied and are found to be identical to those of the single-spin update 
model. In addition, the correlations in the checkerboard Glauber model are found to 
exhibit a null-cone structure, similar to that found in relativity theory. This null-cone, 
which originates in the constraints imposed by the checkerboard update procedure, is 
found to be a general property of the triangular cellular automata model. 

1. Introduction 

The present work is devoted to the study of the one-dimensional checkerboard update 
Glauber model and its relationship to particular one-dimensional cellular automata 
and two-dimensional Ising models. The one-dimensional Glauber model [ 11 can be 
used to model the kinetic properties of the one-dimensional q-state Potts models. The 
static (i.e. equilibrium) properties of these latter models are known exactly [2]. The 
present discussion focuses on the q = 2 ferromagnetic and antiferromagnetic nearest- 
neighbour Potts model (i.e. the Ising model) in an external field; the results, however, 
are easily generalized to the q-state Potts models [3]. Our results are obtained by first 
mapping the checkerboard update Glauber model onto a one-dimensional two-state 
cellular automata [4]. We then make use ofthe well known relationship [5,6,7] between 
one-dimensional cellular automata and two-dimensional Ising models to show that 
the parameter space of the checkerboard update Glauber model is equivalent to a 
subspace of the cellular automata model studied previously by Domany and Kinzel 
[ 5 ]  and Choi and Huberman [3]. We shall call this model the triangular cellular 
automata. In particular these results allow a more complete understanding of the 
cubical parameter space of this cellular automata model. As is well known, Domany 
[8], using a special case of the mapping to be considered here, has been able to show 
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that the checkerboard update Glauber model in zero field is equivalent to the anisotropic 
triangular Ising model at its disorder point [9]. Exact results are known for the 
correlations functions of this triangular Ising model [9], which we employ to study 
the spacetime correlations in both the checkerboard Glauber model and triangular 
cellular automata. 

Our results have the following consequences: we obtain exact information concern- 
ing the dynamic critical properties of the one-dimensional checkerboard update 
Glauber model. The checkerboard update procedure is important as it is used in 
vectorized Monte Carlo algorithms [ 101. We show explicitly that the parameter space 
of the triangular cellular automata model contains a subspace which possesses the 
property of detailed balance [ 111. This is especially interesting because using either 
the master-equation [3] or Ising model [5] formulation, one cannot determine whether 
a given cellular automata model obeys this important property. In addition, within 
these formulations, if the model does obey detailed balance, the time-slice Hamiltonian 
that would determine the temporal development of the system is completely unknown. 
For our special case we show that this time-slice Hamiltonian is the one-dimensional 
Ising Hamiltonian. Furthermore as the checkerboard Glauber model is shown to be 
equivalent to the triangular cellular automata, we identify a new line of critical points 
for the latter model. This critical line is associated with the zero-temperature critical 
line of the one-dimensional Ising antiferromagnet in an external field. Finally we can 
work backwards from the static properties of the one-dimensional Ising model (which 
are trivially known) and gain new information concerning the properties of the 
associated triangular cellular automata and two-dimensional Ising models. 

The organization of this paper is as follows. In section 2 we define the checkerboard 
update Glauber model. In section 3 we map this model onto a two-dimensional 
triangular Ising model and show the equivalence between the checkerboard Glauber 
model and the triangular cellular automata. In section 4 we discuss the phase diagram 
of the Glauber model in the context of the larger parameter space of the two-state 
triangular cellular automata. In section 5 we discuss the correlation functions and 
critical properties. 

2. The checkerboard update Glauber model 

The checkerboard update Glauber model is defined as follows: consider a two- 
dimensional square spacetime lattice (figure 1 ( a ) )  in which on each site of the lattice 
sites an Ising spin s (n ,  t )  = *l. The time slices of the system consist of one-dimensional 
chains of spins which we label, 

s(t) = ( 4 1 ,  t ) ,  s(2, t ) ,  * * e ,  s (N ,  t ) ) .  (1) 
The time-slice Hamiltonian is that of the one-dimensional nearest-neighbour Ising 
model in an external field, 

- P H = J C ~ ( n , t ) s ( n + l , t ) + H C s ( n , t ) .  
n n 

The coupling J may be either ferromagnetic ( J  > 0) or antiferromagnetic (J < 0). To 
determine the temporal development of the system we employ a discrete-time master 
equation [ 11, 121, 

P(s1t-t  I ) =  r,(sIs')P(s'jt) (3) 
is') 
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Figure 1. ( a )  The square spacetime lattice. n and t are unit vectors directed along the 
space and time directions respectively. In ( b )  the arrows along the diagonal lines indicate 
that the state of the pair of spins labelled by points are involved in the update of the spin 
labelled by a cross. 

where P ( S l t )  is the probability that at time t the system is in the microscopic state 
S = S( t ) .  T , ( S / S ’ )  is the transfer matrix that determines the transition rates between 
the various microscopic states. We also impose the normalization conditions Z, P( SI t )  = 
1 and Z, T ( S / S ’ )  = 1; the latter condition ensures conservation of probability. Using a 
checkerboard update procedure [ 121 (figure 1 ( b ) )  we may factorize the transfer matrix 
into local transfer matrices as 

t,(SjS’)=rI:,t(s(n-1), s ( n ) ,  s(n+l) ls’(n))  (4) 
where the prime indicates that if t = even (odd) then the product is taken for n = even 
(odd). To make this a Glauber model we choose the local transfer matrices to have 
the form 

f ( %  I s, 4 -  s) = 3 1  - v o )  

t(s1, s, s2I - s)  = f(1- sy2) 

t (  SI, s, s2/ - s) = f( 1 + sy-2) 

SI + s2 = 0 

SI + s2 = 2 

SI + s2 = -2 

( 5 a )  

( 5 b )  

( 5 c )  

where yo = tanh( H), y2 = tanh(2.J + H )  and y-2 = tanh(2.J - H). We furthermore 
impose the normalization condition, 

(6) 
This choice for the local transfer matrix is equivalent to that employed (with H = 0) 
in the single-spin update model [ 11. In addition we are ensured that our transfer matrix 
(4) generates a time development that obeys detailed balance because this property 
implicit in the local transfer matrix [ l ]  is not altered by the checkerboard update 
procedure. 

t ( s , ,  s, 4 s )  = 1 - t(s1, s, s2j -SI. 

3. Mapping onto a triangular Ising model 

Equations (2)-( 5 )  constitute the definition of a one-dimensional two-state cellular 
automata model (i.e. both the microscopic system states and the spacetime are discrete). 



4168 H Fried 

In general such a model maps onto an anisotropic Ising model defined on a square 
lattice [ 5 ] .  As Domany has shown [8], however, the checkerboard Glauber model 
defined above actually maps to an Ising model on a triangular lattice. It should be 
noted here that in Glauber's notation [ 13 (and with H = 0) we have chosen the CY = i 
and S = 0 form for the local transfer matrices. Other choices [ 13,141 for cy and S can 
be made. These more general local transfer matrices, however, can be shown to map 
onto a square-lattice Ising model. For purposes of simplicity and to make contact with 
previous work we will limit our discussion to the form chosen in [5]. 

We first rewrite the local transfer matrix in the form 

t (s l ,  s, s21s') = ef'(sl,s,s?ls''. (7) 

The Hamiltonian H ( s ,  , s, s21s') is an Ising Hamiltonian defined on the plaquette shown 
in figure 2 ( a ) .  Using the symmetry 

?(SI, 3, szIsf)= t ( s 2 ,  s, 4 s ' )  (8) 

which follows from the form of the spin coupling in the underlying one-dimensional 
Ising Hamiltonian, we find the most general plaquette Hamiltonian to be 

H(s1, s, s21sf) 

= No+ Bl(s l+ s,)+ Bs+ B's'+ Kl s ( s l+  ~ 2 )  + K 2 ~ 1 ~ 2 +  K ~ s ' ( s ~  + ~ 2 )  

+ K I S S ' S  L ~ s s , s ~ +  L ~ s ' s I s ~ S  L ~ s s ' ( s ~  + ~ 2 )  + M ~ s s ' s ~ s ~ .  (9) 

In figure 2 ( b )  some of these interactions are explicitly shown. Using ( 5 )  and ( 6 )  we 
find, after some lengthy algebra, that B = K1 = K4 = L,  = L, = MI = 0. Therefore we are 
left with a Hamiltonian of the form 

H(sl, s, s2\sf)  = No+B,(sl+s2)+B's'+K2sl~2+K3~'(~I+~2)+L2~'~1~2. (10) 

If we define 

Po=%1-Y-* )  

P1= + ( I +  Yo)  

P2 = i( 1 + Y 2 )  

S' 

(a) 

B' 

(b) 
Figure 2. ( a )  The plaquette of spins involved in the definition of the local transfer matrix. 
The spin state s at time t is updated to the spins state s' at time t + 1. ( b )  Some of the spin 
couplings involved in the definitions of (7)  and (9). 
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we find that 

Equations (IO) and (12 )  are exactly those found by Domany and Kinzel [ 5 ]  in the 
study of the triangular cellular automata model. The important result to note is that 
H ( s , ,  s, s2/s’) = H ( s , ,  s21s‘); all dependence on s has dropped out. This would not have 
been the case if we had chosen a # f or 6 # 0. Therefore the plaquete Hamiltonian 
couples the spins located on the vertices of the down triangle (see figure 3 ( a ) ) .  The 
total transition probability defined by 

P(SIT) = c TT-l(SIS7-I)TT-Z(ST-1IST-2) * * * ~ , ( S l I S ’ ) ~ ( S ’ I O )  
is( n,t 1) 

therefore corresponds to the partition function for the two-dimensional triangular Ising 
model with the Hamiltonian (see figure 3 ( b ) ) ,  

H ( { s ( n ,  t ) ) )  = B C s ( r ) + &  C 4 r M r ’ )  
(H1 

r ( r . r ’ )  

(D) (AI + K 3  s( r ) s (  r ’ )  + L2 s( r )s (r ’ ) s (r ’ ’ ) .  
( r , r ’ )  ( r , r ’ , r” j  

Note that we have dropped the constant term and B = B ’ + 2 B l .  The symbols (H), (D) 
and (A) respectively represent sums restricted to the horizontal, diagonal and down 

S’ B 

(a 1 (bl 
Figure 3. ( a )  The spins connected by lines are those that remain in the definition of the 
local transfer matrix when the constraints in ( 5 )  and (6) are applied. ( b )  The associated 
king interactions that remain non-zero (the three spin interaction L, is not shown). 
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pointing triangles of the triangular lattice. The coordinate labels r = (n, t )  are now the 
coordinate labels restricted to those sites corresponding to the triangular sub-lattice 
of the full square spacetime lattice. 

To define the cellular automata associated with the checkerboard Glauber model 
we employ the definitions in (5) and (1 1) to write: 

c(-1, -111) = p o  (15a) 

t(1, -111)= l(-l,  1 /1)=p,  (156) 

t(1,lIl) = p 2 .  (15c) 

We have dropped explicit reference to the spin s and so have written the local transfer 
matrix as t(  sl, s2/s').  For arbitrary values of 0 G pa, p l ,  p 2  S 1, these transition prob- 
abilities define the well known (two-state) triangular cellular automata. We, however, 
consider only a subspace of this parameter space because the probabilities pa, p l ,  p 2  
are not independent, our model having only the two free parameters J and H. It should 
be noted here that (2) is the most general one-dimensional Ising Hamiltonian which 
maps onto a triangular Ising model. For example, with the inclusion of second- 
neighbour interactions our Glauber model would not map onto a two-dimensional 
triangular Ising model and so would not be contained in the cellular automata model 
defined by (15). By implication the triangular cellular automata model will not have 
a well-defined time-slice Hamiltonian outside the parameter range of the Glauber 
model. Therefore we claim to have found the only subspace of the triangular cellular 
automata model that obeys detailed balance. 

In the sections which follow we will discuss the phase diagram and correlation 
functions of the checkerboard Glauber model. We will also discuss in detail, its 
relationship to the triangular cellular automata model and the associated two- 
dimensional triangular Ising model. 

4. Phase diagram of the triangular cellular automata 

As we have previously shown, the checkerboard Glauber model, when formulated as 
a cellular automata, corresponds to a subspace of the (pa,  p l ,  p2) parameter space of 
the triangular cellular automata. This larger parameter space forms a cube defined by, 
O s p o , p , ,  p 2 s  1 (see figure 4). To study the symmetries of this model we redefine the 
origin of coordinates as the centre of this cube. Hence, 

t ( - l ,  - l l l)=po=;+EO 

t(1, -111)= t ( - l ,  l l l ) = p l = f + & ,  

t(1, 111)=fJ2=$+E2. (16c) 

Under a spin-flip transformation, which relabels the spin states yet leaves the properties 
of the model unchanged, we have 

c(1, 11-1)=1-p,=t-E* 

c(1, -111) = f ( - - l ,  1\11 = 1 -p1 = t -  E1 
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Figure 4. The cubical parameter space of the triangular cellular automata. The vertices a, 
map into a :  under the spin-inversion transformation. 

Therefore under this transformation, 

( E o ,  E l ,  E 2 ) ’ ( - E 2 ,  - E l ,  - E o ) .  

= 0, 

(18) 

The subspace invariant under this transformation (i.e. the subspace with Ising sym- 
metry) defines the line = - E ~  (or p1 = 5 ,  po = 1 - p 2 ) .  We shall see that this 
line corresponds to the zero-field Glauber model. Equation (18) shows that it is sufficient 
to consider the properties of only half of the cubical parameter space. In figure 4 the 
cubical parameter space and the mappings of the vertices are shown. The line of Ising 
symmetry which connects the points labeled DK (Domany-Kinzel) and BH (Blote- 
Hilhorst) is also shown. The lines located on the ( po  = 0, p l ,  p z )  and ( p o ,  pl ,  p 2  = 1) 
faces denote the phase boundaries for the generalized directed percolation models 
which have been studied in detail by Domany and Kinzel [ 5 ]  and Kinzel [12]. The 
structure of the upper face follows from the symmetry under the transformation defined 
in (18). For the remainder of this section our aim is to discuss how the checkerboard 
Glauber model fits into this parameter space. We also use the known properties of the 
equilibrium state of the Glauber model (i.e. the equilibrium state of the one-dimensional 
Ising model) to infer additional properties of the triangular cellular automata. 

First consider the Glauber model in zero-field (i.e. H = 0). Using (1 1) we find that 
po = 1 - p 2  and p1 = 4; this, therefore, corresponds to the line of Ising symmetry. Using 
(12) we find that B = L2 = 0 and K 3  = J, K 2  = -f ln[cosh(2J)]]. The latter two equations 
lead to the result found first by Domany [8]: 

e-2K2= cosh(2K3). (19) 

This equation identifies the line of Ising symmetry as that of the disorder point of the 
nearest-neighbour anisotropic triangular Ising model [8]. Therefore, by implication, 
the zero-field checkerboard model is also equivalent to the disorder point of this 
triangular Ising model. In the context of the cellular automata models, this was first 
noted by Domany and Kinzel [ 5 ] .  It should be noted, however, that the connection 
between the checkerboard Glauber model and the triangular cellular automata model 
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was not made in this latter work. A similar result was found by Peschel and Emergy 
[15] in the context of the single-spin update Glauber model. 

To study the case H # 0 of the checkerboard update Glauber model we write, 

2 ~ ~ =  tanh(H-2J)  (20a) 

2~~ = t anh(H+2J) .  (20c) 

2 ~ ,  = tanh( H )  

With J = 0 and H arbitrary (which corresponds to the one-dimensional Ising model 
at T = CO) we find the associated line = E ,  = E ~ .  The equilibrium phase diagram of 
the one-dimensional Ising model is shown in figure 5 .  In this figure we also show those 
points on the phase diagram which correspond to particular vertices of the cubical 
parameter space (see also figure 4). At J = a  and H=O there is a ferromagnetic 
transition, whereas for J = -a the entire (-CO, H) line is critical because the external 
field is irrelevant (in the renormalization group sense) for the Ising antiferromagnet. 
It follows that under the mapping defined in (20) we should expect to find a critical 
point located at = f )  associated with the zero-temperature ferro- 
magnetic transition. This transition has been previously studied by Domany and Kinzel 
[ 5 ]  in the context of the generalized directed percolation models. They consider the 
triangular cellular automata model along the line -4s E ]  ef and = = f .  This 
corresponds to the zero-temperature one-dimensional Ising ferromagnetic as a function 
of the external field (i.e. J = -CO, -CO zs H a). The critical point corresponds to H = 0. 
We also expect to find a line of critical points located at -4s = -.s2 = f 
associated with the zero-temperature antiferromagnetic transition. This critical line is 
a new feature to be found in the triangular cellular automata model. The parameter 
range over which the full Glauber model is defined is shown in cross section in figure 6 .  

Let us now turn to a more detailed examination of the critical points. As discussed 
by Domany and Kinzel [ 5 ]  the ferromagnetic critical point can be interpreted as a 
model of vicious random walkers. At this critical point the local transfer matrix is 
characterized by pa = 0 and p2 = 1. Therefore ( -  1)-domains (( 1)-domains) transform 
in one time step into (-1)-domains ((1)-domains). At p1 = $ the domain walls between 

= - f , E ]  = 0, 

s f and 

line of Isina 

+a, -CO 

(HI 
Figure 5. The phase diagram of the one-dimensional Ising model. The line labelled AF is 
the antiferromagnetic critical line. Also shown are those points labelled a, that correspond 
to the vertices of the cubical parameter space. 
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1 

a- 

0 
0 1 

PO 
Figure 6.  The projection of the subspace of the Glauber model onto the ( p o , p z )  plane. 
The line H = 0 corresponds to the line of Ising symmetry ( p  = 4). The angle ,Q is defined 
by the relationship tan ,Q = e4H. 

these domains can move to the right or left with equal probability (=;). Therefore 
these domain walls execute a random walk. When two domain walls meet they anihilate 
one another (see figure 7), and so these are vicious random walkers. 

We can interpret the antiferromagnetic critical line in a similar manner. Along the 
this line p o =  1 and p 2 =  0 and so (-1)-domains ((1)-domains) transform in one time 
step into (1)-domains ((-1)-domains). Along the critical line p1 varies within the range, 
0 G p1 G 1, and so the domain walls hop to the left or right with a rate determined by 
the specific value of p l .  The situation is complicated in that the (-1)-domains and 
(1)-domains interchange after each time step. To see the character of the domain wall 
excitations we must consider a two-step transformation (see figure 8). Consider a single 
domain wall with a (1)-domain to the left and a (-1)-domain to the right. This domain 
wall hops one step to the left (figure 8 ( a ) )  with a probability p l ( l  -p l )  if a (+, -)+ + 
transformation is followed by a (-, +) + - transformation. If these transformations 
are done in reverse order it hops one step to the right (figure 8 ( b ) )  with a probability 
( 1  -pl)pl .  The domain wall remains stationary (figure 8 ( c )  and ( d ) )  if either of the 
transformation sequences (+, -) + + and (-, +) + + or (+, -) + - and (-, +)+ - 
occur. The total probability for the domain wall to remain stationary is p : +  (1 

+ + + + + + 

+ 

Figure 7. An example of two viscious randomly-walking domain walls at the ferromagnetic 
critical point. 
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I - +  + $ - +  - +  

- -  

(a1 

+ +  - + - { - + - +  - + +  - $ + - +  

+ + - -  - 

Figure 8. The two-step transformation at the antiferromagnetic critical point. ( a )  and ( b )  
have probabilities pl( l  - p , ) ,  ( c )  p :  and ( d )  (1 -pI)’. 

The picture is similar if the (*l)-domains are initially reversed; here, however, the 
order in which the transformations occur must also be reversed. As the two-step domain 
wall hopping probabilities for this model are symmetric with respect to left and right 
hopping, we therefore have a (vicious) random walk model for the entire critical line. 
The property that distinguishes the points along this line is the self-diffusion coefficient 
D of the walkers, where, 

D =2[p,( l  - p , ) ] ?  

Because this coefficient is non-universal we do not expect that it will affect the critical 
properties along this line (i.e. the p,-direction is irrelevant). 

= f , E ,  = 0 and = - f the couplings for 
the associated two-dimensional triangular Ising model take the form B = L2 = 0 and 
K - K - 1 1  - 
the roughening model studied by Blote and Hilhorst [16]. For this reason we have 
labelled this point the BH point. They, however, chose a different cut through the 
parameter space in which K 2 ,  K 3 +  -a and A was allowed to vary. 

We have shown that the phase diagram of the one-dimensional Ising model is 
embedded within the cubical parameter space of the triangular cellular automata. 
Therefore the existence of critical points in the one-dimensional Ising model implies 
that associated critical points are present in the triangular cellular automata. In addition 
we note that all of the critical points so far (including the generalized directed 
percolation transitions) are confined to the faces (and edges and vertices) of the cube. 

We claim that there are no phase transitions (i.e. critical points) in the interior of 
the cube. Let us first restrict attention to the p1 = 4 plane of the cubical parameter space 
(see figure 6). Within this plane the line po= 1 - p 2 ,  corresponds to the zero-field 
Glauber model. The endpoints of this line correspond to the zero-field critical points 
of the one-dimensional Ising model. The line po  = p 2  divides the plane into a ‘ferromag- 
netic’ region where p o  < p 2  and an ‘antiferromagnetic’ region where po  > p 2 .  As p ,  (= 4) 
is constant throughout the entire plane we know that the domain wall excitations have 

It is interesting to note that at the point 

n I-  - A,.  This value of Ac corresponds precisely to the transition point in 
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the same character for each point in the plane. Because the endpoints of the Glauber 
line are random walk points, the structure here is like that of the uniaxially incom- 
mensurate (striped) critical phase of the Pokrovsky-Talpov model [ 171. Moving away 
from these points along the Glauber line we know from the exact solution of the 
one-dimensional Ising model that there is a finite correlation length. The system 
therefore is no longer critical. The general form of the excitations introduced in moving 
away from the critical points is shown in figure 9. These are dislocations similar to 
those responsible for producing the disordered fluid in the models of commensurate- 
incommensurate phase transitions [ 181. The feature which distinguishes the Glauber 
line from the remainder of the plane is that there exists an explicit relationship between 
the core energy of the dislocations and the values of the Ising couplings H and J. If 
we move off the Glauber line while remaining in the plane, we retain the dislocation 
excitations; we merely lose the dependence of the core energy on the couplings J and 
H. Because the precise value of the core energy is irrelevant, the entire ( p1 = f) plane 
(away from the edges) is also non-critical. The argument for arbitrary p1 and p r  < p1 
(i.e. in the antiferromagnetic region) is exactly the same, as the antiferro- 
magnetic critical line is also a random walk point. 

The argument for the ferromagnetic region with p ,  # is similar to the one presented 
above. We know that at the endpoint of the Glauber line the correlation length is finite 
(i.e. this corresponds to J = a ,  H f  0). As we move away from this point along the 
Glauber line we introduce dislocations similar to those of the two-dimensional Ising 
ferromagnet in an external field. However, because these domain walls are not random 
walkers (i.e. p1 # i), these dislocations have no effect on the critical properties of the 
model. If we move off the Glauber line we merely change the core energy of these 
dislocations. Therefore we have shown that throughout the interior of the cube the 
model is non-critical, and hence there are no phase transitions within this region. 

We now turn to a discussion of the faces of the cube. The face ( po = 0, p l ,  p2) (and 
by symmetry ( p o ,  p l ,  p 2  = 1)) has been studied by Domany and Kinzel [ 5 ]  and is well 
understood. There are no phase transitions away from the antiferromagnetic critical 
line on the face (PO= 1,p1,  p2)  (and by symmetry ( p o , p 1 , p 2 =  0)). This is so because 
the excitations introduced in moving away from the critical line on this face are the 
same dislocations as introduced upon moving to the interior of the cube. A difficulty 

Figure 9. The general form of the dislocation excitations (originating at the spacetime 
point labelled D) for the randomly walking domain walls. The shaded and unshaded 
regions denote the two distinct types of domains. 
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occurs, however, as to the status of the point ( po = 1, p1 = 0, p 2  = 1) (and by symmetry 
( p o  = 0, p1 = 1, p 2  = 0)) which corresponds, in Wolfram’s notation [4], to the 165 deter- 
ministic cellular automata. It should be noted that Domany and Kinzel [5] are also 
uncertain of the properties of this point. Finally, for the face ( p o ,  p1 = 1, p 2 )  (and by 
symmetry ( p o ,  p1 = 0, p z ) )  we have only a few remarks. We know that along the lines 
( po  = 0, p ,  = 1, p 2 )  (from Domany and Kinzel) and ( p o ,  p1 = 1, p 2  = 1) and ( p o  = 1, p1 = 
l ,p2)  (both from the Glauber model) there are no phase transitions. However, there 
are open questions along the line ( p o ,  p1 = 1, p 2  = 0) and on the interior of the face. It 
is doubtful, however, that any further transitions will be found. 

In summary, the symmetries of the cubical parameter space of the triangular cellular 
automata model have been discussed. It has been shown how the checkerboard Glauber 
model maps into this parameter space and a new line of critical points have been 
identified. This critical line is associated with the zero-temperature antiferromagnetic 
critical line of the one-dimensional Ising model. Our knowledge of the exact solution 
of the one-dimensional Ising model has also been used to gain further information 
concerning the properties of the triangular cellular automata model within the interior 
and the faces of the cube. We turn now to a discussion of the correlation functions 
and critical properties of these models. 

5. Correlation functions and critical properties 

In discussing the correlation functions of the checkerboard update Glauber model we 
note that under the mappings in (10) and (15) the correlation functions will be identical 
to those of the associated two-dimensional Ising model and triangular cellular automata 
for the parameter ranges of interest. In particular as 

is generally not equal to zero the associated two-dimensional Ising model is anisotropic. 
This implies that the correlation functions will have the form 

M n ,  t ) s ( n ’ ,  t’))  =f(c 6 )  (23) 
where r = [( n - n’)2 + ( t  - t’)2]1’2 and 6 = 0 in the direction parallel to the time axis (see 
figure 10). Note that we have written the coordinates (a,  t )  relative to the underlying 

Figure 10. The null-cone (01 = 7i/4 for the checkerboard update models. 0 = 0 is directed 
along the time axis, 101 = ~ / 2  is directed along the space axis. 
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square spacetime lattice. When applied to the triangular Ising model we must impose 
the restriction n = even (odd) for t = even (odd). 

As the Glauber model obeys detailed balance, we know that the equilibrium correla- 
tion function for 181 = r / 2  (i.e. the correlation function within a time slice) is simply 
that of the equilibrium correlation function of the one-dimensional Ising model. 
Therefore we have 

(24) ( s ( n ,  t ) s ( n f ,  = A e - i n - n ' l / t ( l e l = ~ / 2 )  

where A = 1 for J > 0 and A = ( -l) 'n-n'l  for J < 0. The explicit form of the perpendicular 
correlation length is the familiar result [ 2 ]  

where 

eJ cosh(H)-(e-'" +ezJ  sinh2(H))'" 
eJ cosh(H)+(e--2J +e2' sinh2(H))'i2' 

B =  

For the special case H = 0 we find that 5-'(181= n/2) = -lnltanh(J)I. As we have noted 
above, the line H = 0 (which is the line of Ising symmetry) is equivalent to the disorder 
line of the anisotropic (nearest-neighbour) triangular Ising model. The correlation 
functions of this model have been studied by Stephenson 191. He found that along the 
(81 = r / 2  direction , $ - I =  -lnltanh(K,)I. Using (19) this implies that 

tanh(K2) = -tanh2( K 3 )  = -tanh2(J). (27) 

The last equality follows from the restriction to H = 0. Therefore ( - I =  -2ln/tanh(J)I, 
which is equivalent to our result; the factor of two occurs in the latter case by the 
restriction to the sites of the triangular lattice. In addition to the 181 = n/2 direction, 
Stephenson also found an exact expression for the correlation function along the 
181 = r / 4  direction. Using our notation this result takes the form 

( s ( n ,  t ) s ( n  + a, ? + a ) )  = e-"ic (28) 

where f - ' ( I O l =  r/4) = -lnltanh(J)I and a is an integer. Interestingly, the correlations 
are the same along the 101 = r / 2  and 101 = r / 4  directions. This result is to be expected 
as our checkerboard update procedure limits the temporal influence of one spin on 
another to exactly the line 101 = r / 4 .  The line 181 = r / 4 ,  therefore, represents a 'null- 
cone' similar to that found in relativity theory [ 191. We can now draw two conclusions. 
First the null-cone should be present for the entire parameter space of the triangular 
cellular automata as the checkerboard update scheme is used throughout. This result 
includes as special case the H f 0 Glauber model and the generalized directed percola- 
tion models. Second, the correlation length should obey 

for all angles in the range r / 4  G 181 s v/2.  This latter result follows because these 
angles correspond to pairs of spins at a spacelike separation and so, by the above 
arguments, should not influence one another. Therefore, we have not only gained 
additional information concerning the correlations present in the Glauber model but 
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have extended this information to the entire parameter space of the triangular cellular 
automata. We should emphasize however that the explicit form of the null and spacelike 
correlation lengths is known only in the subspace of the Glauber model. For the 
remainder of the parameter space we have only the general result exhibited in (29). 

We have not been able to find explicit expressions for the correlation functions 
along the directions 181 < ~ / 4  (i.e. for spins at a time-like separation). In principle one 
can calculate these using the method of Pfaffians [9,20], though the calculation is 
quite involved. We can, however, constrain the form of the correlation length t ( l O l <  
r / 4 )  in the regions about the critical points. The argument goes as follows: we 
parametrize the path taken into the critical point (i.e. to any of the Ising critical points) 
by E = E (  p o ,  pl , p 2 )  where E = 0 is the location of the critical point. We expect that for 
E small the correlation length takes the scaling form 

and 

where v = v(lel= 7r/2) and T = T ( 8  = 0) are the correlation length exponents in the 
space and time directions respectively. That T # T ( 8 )  follows from the fact that for 
0 < 181 < 7r/4 we expect the correlations to be a combination of the purely spatial 
correlations (controlled by v )  and the purely temporal correlations (controlled by T ) .  

The 8 dependence of ,$(le/ < ~ / 3 ) ,  occurs only in a non-universal prefactor to the 
correlation length and so is irrelevant for E small. We have made the implicit assumption 
(and one which we shall show to be correct) that 

r z v  (32) 

so that for small E the divergence in the correlation length for 181 < 7 ~ / 4  is controlled 
by the exponent T. If we can calculate T,  this constrains the form of the timelike 
correlations in the critical region. To calculate T we will make use of the result from 
the dynamic scaling hypothesis [21] 

r = z v  (33) 

where z is the dynamic scaling exponent. We will now show that the exponents Y and 
z can be extracted from the results that have been presented above. 

To extract the exponent v we make use of the explicit form of the correlation length 
given in ( 2 6 ) .  Let us first study the ferromagnetic critical point located at ( po = 0, p1 = 
4, p 2  = 1). If we choose the path into this critical point parametrized by E = Ipl -$I with 
p o  = 0 and p 2  = 1 (which corresponds to J = 00, /HI + 0) we find that for small E, 

and so along this direction v = 1. This result is in agreement with that found previously 
by Domany and Kinzel [ 5 ] .  If we choose the path p1 = 4, E = p o  = 1 - p 2  (which corre- 
sponds to H = 0, J + CO) we find 
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and so along this direction v = 4, We further argue that as the core energy of the 
dislocations is irrelevant (see section 4), any path chosen with p ,  = $ (i.e. H = 0) will 
yield the exponent v = i. 

To study the antiferromagnetic critical line we choose the paths defined along the 
subspace of the Glauber model at fixed p1 (i.e. fixed H ) .  These paths meets the critical 
line at an angle p given by (see figure 6 )  

tan(p) = e4H. (36) 

A simple calculation shows that 

holds along the entire critical line, and so we find that v = 4. As in the case of the 
ferromagnetic point we argue that because the core energy of the dislocations is 
irrelevant the correlation length exponent satisfies v = i along any path (with p1 = 
constant) leading into the critical line (i.e. for arbitrary p ) .  This latter result for the 
antiferromagnetic critical line (and the associated result for the ferromagnetic critical 
point) constrains the form of the spacelike correlations for the more general triangular 
cellular automata, (in addition for (29)), in the critical region. This gives additional 
information concerning the critical behaviour of the triangular cellular automata model. 
It should be noted here that (34), (35) and (37) hold also for the single-spin update 
Glauber model. This is so since both the checkerboard update and the single-spin 
update models share the same equilibrium structure in the space direction (i.e. they 
both obey detailed balance). 

So far we have studied the static critical properties associated with the equilibrium 
solution for the time slices of the Glauber model (i.e. the equilibrium one-dimensional 
Ising model). In order to study the dynamic critical properties of this model (i.e. the 
dynamic exponent z )  we must make specific the initial conditions that have been 
chosen. Generally one begins with an arbitrary initial condition (as in a Monte Carlo 
simulation) or a distribution of initial conditions P(SI0) as in (13). In the discussion 
above involving the correlation functions, we have assumed that the system had already 
reached thermal equilibrium. This is equivalent to choosing as our initial condition 
the stationary Boltzman distribution for the one-dimensional Ising model. In our 
formulation this is equivalent to the free boundary conditions employed by Stephenson 
to study the associated two-dimensional Ising model. In contrast to this, our discussion 
in the previous section concerning the random walk properties of the critical points 
assumed implicitly that all initial conditions had equal weight. This accounts in the 
latter case for the presence of domain walls for IJI = a3. With equilibrium boundary 
conditions these domain walls would be absent and the system would be completely 
ordered in either the ferromagnetic or antiferromagnetic ground state. 

It is important to note that to study the critical point, the choice of ‘equiprobable’ 
initial conditions does not represent the equilibrium state. The random walkers that 
are present therefore represent the relaxational modes of the system. This is evident 
from the fact that the walkers are ‘vicious’. It is, however, the properties of this 
relaxation that interest us; they characterize the critical relaxation of the model. To 
calculate the dynamic exponent z we make use of a variant of an argument first used 
by Cordery et al [13] for the single-spin update models. Consider a system whose 
spatial dimension has the linear size L. We begin with a random distribution of domain 
walls. Because these domain walls are vicious (i.e. they anihilate one another upon 
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meeting), the system will have achieved equilibrium in the time T that it takes one 
domain wall to walk across the spatial extent of the system. Because these walls are 
random walkers we have immediately that L== 

T = L ~ .  (38) 

z = 2  (39) 

or 

This identifies the dynamic critical exponent as 

a result in agreement with both the single-spin update model [13] and the results of 
Domany and Kinzel [5]. This result also justifies our assumption in (32). Using (33) 
and (39) we find 

r = 2  (40) 

r = 1  (41) 

along the J = CO, IHI + 0 path to the ferromagnetic critical point, and 

along the remainder of the paths considered for the ferromagnetic and antiferromag- 
netic critical points. 

In summary we have shown that the critical properties of the checkerboard update 
Glauber model are identical to those of the single-spin update model [14]. We have 
further shown that the analysis of Domany and Kinzel[5], for the ferromagnetic critical 
point at J = CO, is equivalent to our formulation of the model. 

5. Conclusion 

By an explicit mapping (20) we have shown that the parameter space of the checker- 
board Glauber model (with (Y =4 and S = 0) is equivalent to a subspace of the full 
parameter space of the triangular cellular automata. As ( 2 )  is the most general form 
of the one-dimensional Ising Hamiltonian consistent with a mapping onto a triangular 
Ising model, we claim to have found the only subspace of the triangular cellular 
automata that obeys detailed balance. Furthermore, from the known equilibrium 
properties of the one-dimensional Ising model we have argued that there are no phase 
transitions within the interior of the cubical parameter space of the triangular cellular 
automata. 

Because the Glauber model is embedded within the triangular cellular automata, 
we expect the phase transitions of the one-dimensional Ising model also to be represen- 
ted in this cellular automata. Along with the ferromagnetic transition, which was 
studied by Domany and Kinzel in the context of the generalized directed percolation 
models, we find a new line of critical points associated with the zero-temperature 
antiferromagnetic Ising model in an external field. Using that the zero-field Glauber 
model is equivalent to the anisotropic triangular Ising antiferromagnetic at its disorder 
point, the results found by Stephenson imply the existence of a null-cone (29) for the 
correlation functions in the associated Glauber model. Because this null-cone results 
from the underlying properties of the checkerboard update procedure, we draw the 
conclusion that the entire triangular cellular automata exhibits this null-cone structure. 

We have studied the critical properties of the checkerboard Glauber model. Our 
results along the path J = 00 and /HI + 0 are consistent with those of Domany and 
Kinzel. We have also shown that the checkerboard and single-spin update models have 
identical critical properties. Though we have only considered the q = 2 Glauber model, 
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our results can be generalized to arbitrary integer values of q 2 2. This extension has 
been treated previously by Choi and Huberman [3] within the context of the q-state 
triangular cellular automata. 

Finally we note that the restriction to the special case of a = j  and S = 0 of the 
general Glauber model was imposed to simplify the discussion and to make contact 
with previous work in this area. The generalization to other choices of a and 8, which 
in general produces a mapping onto a square-lattice Ising model is currently underway. 
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